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Abstract - The decline in apple yield is largely due to diseases that 

harm the apple's leaves. As a result, it is critical that diseases of citrus 

plants be detected using an intelligent detection technology. Many 

artificial intelligence problems can now be solved using deep learning 

methodologies. Consequently, we decided to use this technology to 

identify diseases that can impact citrus fruit and leaves. A model based 

on convolutional neural networks (CNNs) is proposed in this study 

utilising an integrated strategy. There was a need to construct a model 

to discriminate healthy vegetables and plants from those with typical 

apple leaf diseases like black rot and apple scab, therefore the Random 

Forest (RF) model was devised. The PLDP Net-RF model, which was 

introduced, may extract complementary discriminative qualities by 

merging many different layers of data. A number of cutting-edge deep 

learning models were tested against the RF model on the PlantVillage 

datasets. The PLDP Net-RF model outperforms its competitors in a 

variety of evaluation metrics, according to the results of the tests. For 

farmers who are concerned in detecting apple leaf diseases, the PLDP 

Net-RF model is a beneficial tool. 

Keyword: Apple leaf diseases, Random Forest (RF), convolutional 

neural network (CNN), deep learning, transfer learning. 

1 INTRODUCTION 

Research in agricultural production is aimed at boosting yields 

and quality of food while lowering prices [1]. State economies 

rely heavily on the production of plants. Citrus trees, which 

contain a lot of vitamin C, are common in India and the Middle 

East. Raw materials from apple plants are utilised in the 

agricultural business to manufacture a wide range of agro-food 

products such as confectionery [2, 3], jams, candies, and frozen 

desserts. It is difficult, time-consuming, and expensive to make a 

correct diagnosis based on subjective, error-prone, and time-

consuming information. No local experience or knowledge will 

be available to deal with emerging diseases that develop in 

previously unknown places [4]. According to the author [20], 

[21], "transferable learning" reflects the approaches people use in 

everyday life because we don't study everything from beginning 

to end, but rather use knowledge gained in one activity to help us 

in other actions. As a result, we are able to anticipate potential 

problems. For a transfer learning model, isolated learning models 

can use the learned information in another related activity, 

resulting in improved performance on a small data source and a 

shorter training time. Pretrained CNN features were employed by 

[22]–[26] and other researchers to analyse large image 

collections using CNN-based algorithms. 

1.1 Background 

Visuals play an important role in today's technology 

communication. At work, they're all over the place. When a shot 

is taken from a natural perspective, it can be understood by 

humans. It's clear to us that today's technology can outperform 

the human brain. Visuals can be deciphered by computers. It is 

possible to identify objects in photos using machine learning. 

Automated classification and decision-making are possible based 

on these data. When it comes to image segmentation and object 

recognition, there is no better model than CNN. 

1.2 Image Segmentation using Machine Learning Algorithms 

Machine learning is used to perform image segmentation. Image 

segmentation is an essential step in the disciplines of machine 

learning and computer vision. Segmenting an image into 

meaningful sections and assigning each portion to a particular 

category using a labelling system is the goal of segmentation. We 

can perform an infinite number of tasks using image 

segmentation. There are many examples, including self-driving 

car systems and robots controlling robots, systems for verifying 

the quality of fruits and vegetables, systems for maintaining the 

quality of production lines, and so on. For each pixel in a 

segmented image, the image is assigned an appropriate label. 

These pixel-by-pixel labels are known as dense predictions. 

1.3 Region Based Segmentation 

Images can be segmented using a region-based approach It 

separates the objects into distinct zones based on some criterion 
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(s). This type of processing relies on the intensity of the image 

pixels. With it, you can distinguish between areas of higher and 

lower intensity inside areas of higher intensity. A threshold is 

chosen for the purpose of discriminating. The intensity of the 

pixels in one section is lower than the threshold, whereas the 

intensity of the pixels in the other section is higher. It is possible 

to divide an image into more than two sections based on the 

intensity of individual pixels, in the same way. The simplest 

method for segmenting images is to use the pixel values as a 

reference. An object's edges are likely to have different pixel 

values than the object's background pixels, which can be 

exploited here. 

1.4 CNN based image segmentation  

This technique is currently the most advanced in the field of 

photo segmentation research. Images with three dimensions—

height, breadth, and the number of channels—are successfully 

processed by this algorithm. Three dimensions are used to 

describe the number of channels (RGB) or intensity levels for 

red, green and blue colours in a picture, and the first two 

dimensions provide us information about the image resolution. 

When images are fed into the neural network, they are typically 

reduced in size to reduce processing time and avoid the problem 

of underfitting. despite the fact that converting a 224 by 224 by 3 

image to a one-dimensional input vector yields a 150528-bit 

vector. As a result, the input vector is still too large to be used as 

an input to the neural network. These days, the ability to segment 

images with CNN is more important than ever before. This 

method is now considered the most advanced technology in the 

field of picture segmentation. You can use this to break up an 

image into distinct sections. 

1.5 Motivation 

The categorization of plant leaf diseases images is done using 

supervised machine learning and deep learning methods [7, 22]–

[24]. Liu et al. [24] used Deep learning to classify illness in plant 

leaf pictures. Due to a lack of attention paid to the selection of 

parameters and layers, the neural network model has some 

performance difficulties. CNN model for leaf disease 

classification in photographs of fruit and leaves, on the other 

hand, has a variable number of layers and distinct parameter 

settings. In addition, we tested a variety of CNN models and 

compared them to the research that served as our baseline. For 

illness classification, we propose utilising a CNN technique 

based on images of apple leaves. A number of leaf diseases can 

be diagnosed using the proposed method. 

1.6 Contribution 

The following are the study's major contributions: Pre-processing 

and picture segmentation algorithms are used to the dataset, 

which is then split into test and training data. The deep feature 

vectors are extracted from the multiple convolutional layers of 

the proposed CNN-based PLDP Net. To help the RF 

classification model, we've taken deep characteristics from 

several layers and fed them in. Random Forest (RF) PLDP Net-

RF Model, developed to discriminate between healthy and 

diseased apple leaves with typical illnesses such as early blight 

and late blight, is known as the Plant Leaf Diseases Prediction 

(PLDP Net). 

1.7 Research Paper Organization    

This article's structure is outlined below. The second portion 

begins with a look at some of the related works. This section 

provides an overview of the "proposed PLDP Net-RF model," as 

well as the "methods," "dataset," and "data preprocessing" 

discussed previously. Section 4 includes the results of all of the 

tests, a discussion of the model's limitations, and a look toward 

the future. There was a lot of discussion concerning the outcomes 

in Section 5. Section 6 provides the conclusion of this study and 

the scope for further investigation. 

2 LITERATURE SURVEY 

Cutting-edge image processing and deep learning-based 

approaches can detect plant leaf disease. There are various 

diagnostic methods that use a trained Convolutional Neural 

Network (CNN) for the identification and categorization of 

healthy and damaged plants. Using a trained neural network, 

Manso et al. [7] used segmentation to remove background data. 

A combination of K-means, infected leaf lesions, and minimal 

resentment can be used to distinguish between diseased and 

healthy cucumber plants [8]. It was found that by using feature 

maps, Yeh et al. could better distinguish between areas of 

importance and non-essential layers for classification [9]. Plant 

disease detection approaches based on images and artificial 

intelligence are numerous [10]. 

Colorimetric systems and parameter values were selected for the 

relevant elements based on the two-color elements and texture 

[17].] [18]. The patterns in tomato leaves were discovered by the 

application of K-means clustering. On the other hand, the 

selection of feature parameters affects detection accuracy. The 

model's learning rate was dynamically altered [18] to identify 

disease using a typical backpropagation technique. One-shot 

multibox detection was employed by Visible Geometric Group 

(VGG) for the detection of the cotton plant disease proposed in 

[19]. In a study using smartphone photographs to diagnose plant 

leaf disease, Sibiya and Sumbwanyambe's CNN model achieved 

a detection accuracy of 92.85% [20]. Shin et al. used six different 

pre-trained deep learning-based models for the diagnosis of 

powdery mildew disease in a strawberry dataset [21]. 

Author [22] suggested a CNN-based method for detecting tomato 

illness. Plant illnesses were detected in these studies using a 

variety of datasets, including those from diverse plants [23], [24], 

and a dataset from a peach orchard [25]. Apple leaves were 

detected using DenseNet, while ResNet was utilised to identify 

coffee and soybean plant illnesses. A unique technique to 

multitasking was developed by the authors employing VGGNet 

transfer learning to extract discrete features from several datasets 

and train independently for numerous related tasks on wheat and 

rice plant datasets. For mango leaf diseases, Singh et al. used a 

multi-layer CNN to achieve detection accuracy of 97.13 percent 
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[33]. The Internet of Things and fuzzy networks were used to 

detect the sickness of Pauropsylla [34]. 

There were only somewhat densely linked convolutional 

networks used in its development. A citrus dataset was used to 

test various CNN models. The NIN-16 model outperformed the 

SENet-16 and SENet-16 models in the test, with an accuracy rate 

of 91.66 percent. Citrus diseases can be classified and diagnosed 

using MobileNetV2's training from [24]. Comparing 

MobileNetV2's model accuracy, model size, and model 

validation speed to those of other network models can show its 

capacity to classify and identify citrus diseases. MobileNetV2 

has the same accuracy and speed as other network topologies. 

Both MobileNet and Self-Structured (SSCNN) classifiers were 

evaluated by Barman et al. [35] in order to identify diseases in 

citrus leaves. At epoch 10, MobileNet CNN's training accuracy 

reached a maximum of 92%. Training and validation accuracy 

peaked at 98 and 99 percent, respectively, at epoch 12. 

Convolutional neural networks (CNNs) were created by [36] for 

the detection of the three citrus pests listed above. 

A set of 1774 photos of orange leaves was used to evaluate the 

new approach. A CNN accuracy experiment used a ten-fold cross 

validation method. In compared to previous CNN algorithms, the 

ensemble attained an accuracy rate of 99.04 percent. Citrus fruit 

flaws can be detected using a CNN algorithm, according to [37], 

which is both effective and robust. It is compared to an 

unaugmented, unprocessed dense model as a benchmark. Using 

the proposed approach, an accuracy of 89% has been estimated. 

Citrus crop damage can be estimated using data augmentation 

and preprocessing processes. Automated systems for monitoring 

ACP in groves were developed using machine vision and 

artificial intelligence by [38]. Camera boards with a grid of 

cameras were used to capture images from the tree's branches 

using bug traps and camera boards. Programming that can detect 

psyllids from other insects and tree debris was developed using 

two convolutional neural networks. When ACPs were found on 

90 immature citrus trees, the accuracy and recall rates were 95% 

and 95%, respectively. 

Even relatively simple ML and DL algorithms have been shown 

to be successful and frequently used in crop disease prediction, 

most early studies had difficulty increasing classification 

accuracy rates. Additionally, the neural network model suffers 

from a lack of suitable parameter and layer selection, which has a 

negative impact on its performance. A CNN model with various 

layer counts and parameter values can classify citrus diseases in 

fruit and leaf pictures. Results of these trials were also compared 

to previous studies employing CNN models that were not as 

accurate as the current model. We present a CNN model with 

multiple layers for accurately classifying citrus diseases from 

images of fruit and leaves. 

3 PROPOSED METHODOLOGY 

This section shows how the suggested system performs in a real-

world task, such as the classification of plant illnesses that harm 

the leaves. 

3.1 Plant Village Dataset 

There are healthy and diseased plant species included in the 

PlantVillage dataset [42]. RGB photographs, grayscale images, 

and a segmented RGB image are all utilised in the [43] process. 

This dataset was collected in a variety of environments, therefore 

the leaves of the plants are arranged in a variety of ways. In 

certain cases, the leaves are not perfectly separated from the rest 

of the landscape. We weeded out photographs that were too 

disjointed and difficult to identify from the original collection. 

We looked at many kinds of plants and diseases. For species 

identification, only healthy plant leaves were used. Class and 

arrangement images are shown in Figure 2. 

 

Figure 2: Example input image from the Dataset (Apple healthy 

and diseases leaf) 

3.2 Proposed PLDP_Net – RF models 

Based on the PLDP Net and its accompanying RF models, the 

proposed solution is developed on top of it. For pre-trained 

CNNs, we employ large object datasets. It is then used with the 

same weights on a fresh classification task. There are numerous 

advantages to working using pre-trained models. Features may 

be extracted in a short amount of time because images are only 

sent through the system once. The categorization process 

requires only a few datasets and no architectural handwork. 

Because of the enormous datasets used to train these models, it is 

possible to apply previously learned patterns and features to a 
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new situation. If the conclusions are to be of any use, they must 

be based on a fair comparison of the old and new responsibilities. 

 

Figure 3: Architecture of Proposed PLDP_Net – RF Model 

To build popular PLDD Net models, researchers use a variety of 

object-oriented and tough classification datasets, however for the 

sake of this article, we'll be focusing on photos of sick leaves. As 

a result of the hierarchical structure of PLDP Net – RF models, 

only the lowest-level traits and patterns can now be used to begin 

identification tasks in PLDP Net. Figure 3 shows a block 

schematic of the classification system for leaf diseases that we're 

looking at. Images of plant leaves are classified using the PLDP 

Net–RF models. All three dimensions of an image are taken into 

account when the Convolutional layer is used. First and 

foremost, we look at the image's width and height to figure out 

the image's resolution and the number of colour channels (RGB). 

It is common practise to reduce the image size before feeding it 

into a neural network in order to speed up processing and avoid 

underfitting. There is no difference in the final output, no matter 

how we change the image's dimensions. As a result, the neural 

network can't use this data set as a training stimulus. Following 

are CNN's key layers: Layers such as convolution, activation, 

pooling, dropout, and fully connected are all examples of these 

types of layers.  

A feature vector for each image in the collection can be 

generated using the PLDP Net model. Remaining shots will be 

analysed using the retrieved feature vectors fed into a Random 

Forest classifier, which has been trained on 75% of images from 

each classification (25 percent ). You must delete the 

classification layers at the end of a CNN network in order to 

retain the weights learned in the previous task because they were 

built to handle a bigger number of courses than those in the 

current challenge. PLDP Net handles feature extraction whereas 

the RF handles classification in this study. Classification could 

have been accomplished with an artificial neural network (ANN), 

but it would have fallen short of R's performance in this case. 

The convolutional basis of a CNN allows for an efficient feature 

extractor, however [37] claims that a linear classifier renders it 

inefficient for classification. 

3.3 Alex-Net Model 

AlexNet's eight-layer CNN consists of 5 convolution layers, 3 

maximum pooling layers, and 3 fully linked layers. There are 

more than a million images and over 1,000 categories in the 

ImageNet database used to train AlexNet. It can accept photos 

with a high resolution of 227x227x3 pixels as input. Color 

images are represented by the 3 digits, and the resolution 227227 

is the width and height of each individual image. It takes four 

steps to move an 11x11-pixel filter around in the first 

convolution layer. There are 256 filters in the second convolution 

layer, each with a 5x5 filter area and a one-step stride. The third 

convolution layer consists of 384 filters with a 3x3 and a single 

stride filter size. Using 3x3 filters with a one-step stride, 384 

filters are used in the fourth convolution layer. The fifth 

convolution layer has 256 filters with a stride length of one and a 

filter size of 3x3. 

 

Figure 4: Architecture of Alex Net Model 

Data on convolutions, filter dimensions, and stride can be found 

in Table 2. A 3x3 pool size is used for ReLU and max pooling in 

order to normalise each successive convolutional layer [29,30]. 

Figure 4 depicts the total setup of the AlexNet system. 

3.4 VGG-16 Net Model 

The Convolutional Neural Network (CNN) evolved into the 

Deep Convolutional Neural Network (DCNN) as a result of its 

development (DCNN). 
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Figure 5: Workflow of VGG-16 Net deep learning architecture 

AlexNet is one of the most extensively used Deep CNN models. 

ILSVRC-2014 competition uses VGG-16 (Visual Geometry 

Group), a powerful deep convolutional neural network. The 

VGG-16 Net model presented in Figure 5 has 13 convolutional 

layers, five max pooling, two fully connected layers, and one 

soft-max classifier. This stratum has a total of five blocks. Each 

of the two blocks contains two convolution layers and one 

pooling layer. There are three convolution and one pooling layers 

in the other blocks. 

4 Experimental Setup 

The approach is tested in two different studies. Starting with 

PLDP Net models trained on large object datasets, we investigate 

how they may be used to classify leaf pictures using transfer 

learning as well as which PLDP Net layers are most relevant to 

extract features from in practise. A leaf classification system can 

then be utilised in precision agriculture to identify plant illnesses. 

4.1Evaluation metrics 

Performance assessment measures are used to evaluate the 

proposed model's performance. Preciseness (Pr): To gauge how 

far a metric will go, precision is one of the most prevalent 

methods of doing so. It's a way to figure out how many events 

were successfully anticipated out of all those predicted. We can 

gauge the accuracy in this manner:         
  

     
  

     (1) 

Recall (Re): The percentage of events that were correctly 

anticipated out of all those that occurred is known as the 

Remember (Re).     
  

     
    

    (2) 

Precision (Q): The precision of a classification is based on the 

number of examples that are correctly identified. In order to 

measure a classification system's accuracy, the percentage of 

valid classifications divided by the total number of classifications 

can be calculated.    
     

           
    

   (3) 

F1-Score (F): The F1-measure is used to achieve a balance 

between precision and recall (harmonic mean). Following is the 

formula for calculating an F1 score:      
     

     
  

 (4) 

 

Figure 6: Formation of confusion matrix 

4 DISCUSSION 

It is in this section that the results of the experiments that have 

been carried out in order to address the research questions are 

discussed and examined. In order to identify images of sick 

leaves, we used RF classifiers to examine various PLDP Net 

feature layers. Table lists the PLDP Net-RF model parameters for 

detecting leaf disease. In varied configurations, we used one to 

six convolutional layers. With several convolutional layers and 

settings like 16, 16, 32, 2, and 20 epochs, the suggested PLDP 

Net-RF model achieved a maximum accuracy of 96.21%. Net-RF 

model training loss is decreased by increasing training epochs 

and decreasing convolutional layers. Accuracy, precision, recall, 

and F1-Score [37] are used in this experiential inquiry. Input 

photos are resized to 224X224 using the techniques used in this 

study. 70% of the dataset was used for training, but only 30% 

was used for testing. The proposed method was evaluated on the 

plant village dataset for 20 epochs. 

Table 1: Evaluation Metrics of Apple Leaf Diseases Analysis 

using PLDP Net-RF 
Category Accur % F1-Sc % Reca % Prec % 

Apple Scab  95.21 93.36 95.45 92.94 

Black Rot 94.74 96.14 94.12 97.61 

Cedar Apple Rust 95.98 97.25 97.24 98.53 

Healthy 94.54 96.96 96.57 96.75 

 

Table 2: Traditional classifiers performance analysis 
S. No. Classifier Accu Prec Reca F1- Sc 

1. Alex Net 93.31 92.11 93.36 92.41 

2. VGG-16 Net Model 94.80 95.32 94.89 94.89 

3. PLDP_Net-RF Model 95.53 96.66 96.54 96.53 
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Figure 7: Levels of different evaluation metrics 

The table 1 and figure 7 describes the Evaluation Metrics of 

Apple Leaf Diseases Analysis using PLDP Net-RF. The table 2 

and figure 8 shows the comparison of traditional classifiers 

performance with proposed model. 

 
Figure 8: Comparison bar chart for proposed and traditional 

classifiers  

6    CONCLUSION 

Farmers will be able to plant high-yield apples more easily with 

the help of the planned apple leaf disease detection system. This 

study uses image processing, deep learning, and machine 

learning to identify apple leaf disease. From a plant's image, the 

farmer is able to properly identify its illness. Segmentation, 

PLDP Net feature extraction, and classification utilising RF are 

the four components of the proposed system.There are other 

systems that have good technique and implementation in this 

study that we compare to ours. The proposed technology 

provides more accurate and trustworthy findings than current 

sickness detection systems, and it is simpler and faster to 

implement. Farmers benefit from the use of this product. As 

agriculture is a significant contributor to our country's per capita 

income, the system can help improve crop output monitoring 

administration. 
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